\qquad Date: \qquad Period: \qquad

Acceleration

- Acceleration is the \qquad at which the \qquad of a moving object changes. (Actually includes both speeding up and slowing down)
-Velocity describes the \qquad of an object.
-Acceleration describes how the \qquad changes.
acceleration $=$ \qquad or $\mathrm{a}=$ \qquad
-Possible units for velocity are: \qquad
-Since acceleration is the rate at which velocity changes its unit will be any unit for \qquad over \qquad . Ex. \qquad

Sample Problems:

-Captain America is running north at a velocity of $5 \mathrm{~m} / \mathrm{s}$. Noticing that he is not catching up to the villain he is chasing he decides to pick up his speed. Within one second he increases his velocity to $10 \mathrm{~m} / \mathrm{s}$. Within one more second he increases his velocity from $10 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$. What is his acceleration?
-How quickly would the Batmobile accelerate if it's forward velocity changed from 0 to 32 meters per second in 4 seconds?
-What would be the acceleration of Hawkeye's arrow if its speed increased from 204 miles per hour to 222 miles per hour within 2 seconds? velocity. Since acceleration includes any change in velocity (increase or decrease) deceleration is calculated using the same formula.
-When calculating deceleration you will always end up with a
\qquad answer.
-Since acceleration measures changes in velocity, an object that changes either \qquad or \qquad is accelerating. An object may be accelerating even if its speed is constant.

Graphing Speed and Acceleration

(aka Speed graph)

Velocity-Time Graph

(aka Acceleration Graph)

Line Curved up=

Line Curved down= \qquad
\qquad

Straight line angled up= \qquad
\qquad

Straight line angled down= \qquad
\qquad

Flat Horizontal line= \qquad
\qquad

Flat Vertical line= \qquad
\qquad

